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ABSTRACT
A uniqueness theorem is established for the scattering of harmonic

elastic waves by a body with continuously varying parameters placed in a

homogeneous medium.
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SIGNIFICANCE AND EXPLANATION

The passage of waves through a solid is a matter of some practical
importance because of their effect on structures and also because they can be
responsible for the transmission of noise. vib;ation may occur naturally due
to such thing as earth movement and wind gusting or may be caused by
wmachinery. Sometimes oscillations are deliberately induced, as in ultrasonic
testing, to check the strength of bonds, to detect flaws or to locate pockets
of material different from their surroundings. Theoretical prediction of
phenomena is therefore a vital adjunct of investigation in the field.

The theory is based on computing solutions of the equations of a
mathematical model. These equations may, and usually do, have several
solutions so there is a task of identification and interpretation of their
relevance; clearly, wasted effort will be avoided if it can be indicated which
solution or solutions to seek. Previously, it has been shown that, if a loss-
free cbject of constant properties is embedded in another substance with
constant material properties, there is only one solution which allows energy
to radiate away from the body after it has been struck by an incoming wave.
This report extends the theory to obstacles whose properties change
continuously from point to point and also permits them to have losses. It
shows that there is still a single solution to be found provided that one
keeps to the mathematical criterion that the disturbance from the obstacle

spreads outwards.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.




A UNIQUENESS THEOREM IN ELASTODYNAMICS
D. S. Jones
1. Introduction

In his book on elastodynamics Hudson (1980) points out the need for a
uniqueness theorem for materials which are not homogeneous. This paper makes
a contribution to filling that gap by providing a uniqueness theorem for
inhomogeneous, but isotropic, bodies. Inhomogeneities of two types will be
examined. Thosgse in which the material parameters are constant except across
certain surfaces of discontinuities and those in which the parameters vary
from point to point but have some continuity and differentiability available.
The piecewise homogeneous case has already been digcussed by Kupradze (1963)
but it is included here partly for completeness and partly because it involves
only a short argument from formulae which are needed for the continuous
inhomogeneity. 1In our investigation, the material parameters are permitted to
be complex, with some limitations, so that lossy substances are not excluded
from the theory. Only bonded bodies will be the subject of study.

Section 2 sets out the basic linear equations which are of concern and
formulates some of the constraints on the field. Standard formulae for the
representation of the displacement in a homogeneous body, whether finite or
infinite, are given in Section 3.

As it turns out a proof of uniqueness for the general problem revolves
about a proof for the interior of a finite body. This interior question is
examined for the piecewise homogeneous substance in s;ction 4 and for the
continuous inhomogeneity in Section 5. While the analysis of Section 4 is a

straightforward application of the representation for the displacement that of

sponsored by the United States Army under Contract No. DAAG29-80-C-0041.




Section 5 is much more complicated and probably the most difficult part of the

whole exercise. Nevertheless, the theory here has no restrictions (other than
continuity and differentiability) on the complex values of the material
parameters though this freedom has to be abandoned in the full problea

later. By means of the interior theorems the relevant theorems for the
infinite medium are derived in Section 6 and their application to the
unigqueness problem in scattering indicated in Section 7.

Two appendices contain results whose derivation would hlih interrupted
the flow of argument in the main text. Appendix A gives, for easy reference,
certain properties of spherical harmonics needed in Section 5. Appendix B
covers the basic uniqueness theory and expansion properties in an infinite
homogeneous medium. In particular, it verifies that one of the two customary
radiation conditions can be disposed of without affecting uniqueness.
Equations from the Appendices when referred to in the main text are

distinguished by the appropriate letter.

2. The governing equations

The first problem to be considered is that of harmonic elastic waves in
an isotropic body of finite size. The body occupies the volume T_ and its
surface will be denoted by S. The volume outside S will be identified by

T, In T_ the displacement at the point x is wu(x) with Cartesian

components uy and the stress tensor is T,. . The material occupying T_  is

Ik
of density p and its elastic properties are specified by the Lamé parameters

A, M It will be assumed that there are no body forces. Then the equations

to be satisfied in T_ are, when the time dependence is elUt.

du du au.k
1, = A28, + ufed e =E) )
ik Ox- jk axk axj
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where § 3k is the standard Kronecker symbol and the usual summation
convention has been employed. The Cartesian form of the governing equations
is given with (x,,x;,x;) the coordinates of the point x.

In most applications p 1is positive and, in lossfree media, A> 0 and
U > 0, Wwhen dissipation is present A and ¥ can have imaginary parts. For
much of the subsequent analysis they can be taken as arbitrary complex
quantities but it will always be assumed that, on T_ and 8,

lul > W/K, 1224] > /x , (3)

where K 1is a positive finite constant.

The solutions of (1) and (2) to be found depend on the boundary
conditions on 8 and whether there is any transfer of enexgy between T_
and T, . When wave motion in T, has to be taken into account the media will

be assumed to be bonded across the interface S 8o that the traction and

displacement are continuous there.

3. The homogensous medium

For subsequent purposes it will be convenient to have a representation of
the displacement when the medium is homogeneous with A, 1, p having the
constant values lo, Uyr Py respactively. It will be supposed that L ¥ 0
in concordance with (3). 1let

. (ey) = 1 a2 .-Lo:alml - ‘-ublw ] e-iublml s
Jx 2o X w2 x Oxk 1x-y| Atuolgg-y‘l ik

(4)

7 V.
where a = {pol (Ao+2uo)} 2, b= (pg/4y) 2 are the slownesses of P~ and §-

waves respectively. TFor complex parameters the square roots are defined by

o




o

their principal values. In view of (3) both a and b are finite. The
ranges of the parameters will be restricted so that
Im(wa) € 0, Im(ub) <O

but the real and imaginary parts of ws are not permitted to vanish

simultaneously nor are thogse of wb. If Im(wa) = 0 then wa must be
positive and similarly for wb.

The tensor gjk specified by (4) satisfies

2 2
g k g 2
(Ag*u,) o, o * Y x o, * Py = 8 8trx) . (6)

By means of the divergence theorem and (1), (2), (6), Betti's representation

(see, for example, Kupradze (1963)) can be obtained, namely

?
?
u (x) = [Anu 3, 94 (X0X) * Wy(njueniu,) o, 95 (XeX)

(7)

(x,Y)ny }dsy

< %3194k

for x in T_. In (7) B is the unit normal to 8 out of T_ into Tye

If x is in T, the left-hand side of (7) is replaced by zero.

Suppose now that T, is a homogeneous isotropic medium.

A representa-

tion similar to (7) can be derived provided that appropriate radiation
characteristics at infinity are prescribed. There are two possibilities that
will be considered.
In the first case suppose that Im(wa) < 0 and Im(ub) < 0. It is then
evident from (4) that Iyx decays exponentially at infinity. Assume that the
displacement and stress also are exponentially attenuated at infinity. Then

apply (7), which is valid for the interior of any closed surface, to the
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volume between a large spherical surface and the exterior side of §. Because
of the exponential falling off of Iyxs Yo Tjk the contribution of the
spherical surface tends to zero as the radius of the sphere approaches
infinity. Therefore, if the definition of n is retained unaltered, uk(:.t_)
is the negative of the surface integral in (7) when x 1is in T.. Of course,
it must be remembered that in this surface integral u and tjk

values on S which are approached from T, whereas when the integral

have the

represents u, in T_ the values of u and T ik on the interior side of

S must be employed.
The second cage is that in which Im(wa) = 0 and Im{ub) = 0. Now it is

assumed that, as R = |x| + ®, Ru is bounded and that

R{xmt + 1«buo(u -uxx,) + fwa( %+2“0);ju-xn} +0 (8)

Im i amy

~

where x is a unit vector in the direction of x. Actually, it is shown in
Appendix B that the requirement for Ru to be bounded is superfluous but it
is easier to jﬁstify some of the subsequent statements if this condition is
retained. Bearing in mind that, as |x| *+ ® with y fixed,
x a~ ~
5% 2 ~tub(Rexey) _ 2 -iua(Rex°y)
9y (XeX) awp R [be a'e ]

(9)
- cjk =iub(R-x°y)
4wy R e

we see that the contribution from the sphere at infinity again vanishes. The
conclusion is that w, can be represented in T, by the negative of the

surface integral in (7).




It is conceivable that one of Im(wa) and Im(ub) could be zero while
the other was negative but this does not seem to be of sufficient practical
significance to justify separate conaideration. Therefore, only the two cases

already mentioned will be discussed subsequently.

4. The interior problem for piecewise homogeneity

This section and its successor are devoted to examining what can be said
about the field in T_ when the displacement and traction vanish on S.
Obviously, if the medium is homogeneous (7) may be invoked with the conclusion
that u =0 in T_. It follows from (1) that the stress also disappears.

Actually (7) can be extended to piecewise homogeneous bodies in suitable
circumstances. Let 8y be a closed surface, entirely inside 8§, where the
material properties change discontinuously from one set of constant values to
another set. Apply (7) to the closed surface consisting of 8 + 84+ The
integral over S is removed by the boundary conditions. As for the integral
over S, it represents a field everywhere outside S8, and it is obviously
analytic. But it is identically zero outside S and therefore analytic
continuation ensures that it is identically zero‘outside 84 Therefore the
traction and the displacement on the exterior of 84 are zero. If the media
are bonded across 8, the traction and displacement are continuous and
therefore zero on the inner side of S,. If the interior of 5, is
homogeneous the preceding pa;agraph tells us that the field is zero. If there
is another closed surface S, inside S, where the material properties
change but in a bonded manner we repeat the argqument starting from the closed

surface s, + 8y Obviously the procedure may be continued for any finite

number of closed interfaces each totally enclosed by its predecessor. Such an
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arrangement may be distinguished by the adjective neated. There is, of

course, no reason why Sy should not consist of a finite number of distinct
closed parts.

It must be emphasized that the above process may break down if, at any of
the interfaces, the boundary conditions are other than the continuity of
traction and displacement. In order to stress this point the word bonde” is

included in the following theorem which has now been demonstrated.

Theorem 1. If the traction and displacement vanish on the bounded
surface S of a bonded nested piecewise homogeneous body T_ the
displacement and stress tensor are identically zero in T_.

5. The interior problem for continuously inhomogeneous bodies
While Theorem 1 does cover certain inhomogeneous bodies the departure

from homogeneity consists essentially of discontinuous changes across
surfaces. In this section the material parameters will be assumed to vary
from point to point but discontinuities will not be permitted. 1In fact, it
will be assumed that ¢ is continuous, A is continuously differentiable and
that u 1is twice continuously differentiable.

Throughout solutions of (1) and (2) in T_ will be sought in which u
and Ju jlaxk are continuous. Furthermore, the boundary conditions

g= 0 nyTy =0 (10)

will be imposed on 8.

If T_ were a piecewise homogeneous medium the boundary conditions (10)

would be sufficient to ensure that the field vanished identically but the

arqument of the preceding section cannot be carried over to the case when the
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material parameters are continuously variable because the representation (7)
is no longer available. Instead one is forced to proceed in a more indirect
fashion.

In order to fix ideas the value zero is assigned to A, ¥, p in T,.

Lemma 1. Let the field u''), t')) be definea by

(1) {1)
u =

u q, tjk " Tk (xerT) ,
(1) () _
gL Ty =0 (xfgT) .

Then, under the asaumed conditions, 2(1’, 3n§1)/3xk, t;;), 31;;)/3xk are

continuous everywhere.

Proof. Until the stated continuity has been established values on S when
X approaches there from T_ will be denoted by ( )_ and those for x
starting in T, will be signified by ( ).

Continuity in T, 1is impmediate because all gquantities vanish and,

moreover,

(1) (1) (1) (1)
3 /axk)"' =0, (T ), =0, (atjk

(2 jk '+

), =0, (du

+ /axk)+ =0 . (11)

In T_, n is continuous by assumption and (10) gives (2(1)) =0,

(1)

Thus the continuity of u has been verified. It is also clear from the

{1) {1) (1
hypotheses, (1) and (2) that auj /axk, Tjk and atjk

in T_. Accordingly, the lemma will be confirmed once the requisite

/axk are continuous

continuity across S has been demonstrated.

Choose any closed circuit C on 8. Then, by Stokes's theorem,

[oti™)_ag = [, nn (graaul’)_as (12)

where S' 1is the portion of S8 within C. By assumption (10), the left-hand

side of (12) is zero. Since C is arbitrary, the conclusion is that

(1)
i -

nA (grad u is zero on 8. A vector product with n then enforces

] ¢
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(1) a“(1)

u
(__.a:j )_ = n,l ). (13)

on S.

(

Also (10) says that n (le))_ =0 on S and so, from (1),

3

au;‘l) 3u;1) 3 1)
e g s

X
m

The insertion of (13) leads to

(1) (1) (1)
du aul 9
Anknm( 3: )- + unjnk( an )- + u( ::

)_=0 (14)

on S. Multiply (14) by n, and then, by virtue of (3),
(1)

a (3\1

3
On the other hand, if Aijk is the alternate tensor, multiplication of (14)

by quknq gives

/im)_=0 . (15)

(1)
quknq(auk /dn)_=0 (16)

on invoking (3) and noting that quknan = 0. Equations (15) and (16) may be !
(1)

expressed as 5035(1)/3n =0, nA 3 "/dn =0 and therefore (32(1)/3n)_ = 0 }

on 8., One infers from (13) that (3ui1)/3x
(1)

j)- = 0 on S. The required

continuity of aui /3xj now follows from (11).
In view of (1) and (11) the continuity of T;;) may be inferred whereas
that of at;l)/axk is a consequence of (2), (11) and what has already been

established about 9(1). The lemma is proved.

Theorem 2. In T_ let u, 3uj/3xk be continuous and satisfy (1), (2)

under the given assumptions. If u =0 and njrjk =0 on S them u =90,

Tjk 20 _iﬂ T_.




O
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Proof. To permit analysis in the whole of space u and tjk are first

(1) (1)
ik

writing the affix (1) will be dropped, on the understanding that its presence

and as in Lemma 1. However, for simplicity of

extended to )}

is allowed for.

Pick as origin any point which can serve as the centre of some sphere

within which the field vanishes identically. Clearly, there are many possible
choices since any point of T, has the desired property.

Let R, 6, ¢ be spherical polar coordinates based on this origin. There
are 2n + 1 independent surface harmonics of order n. Construct an
orthonormal set from them and let a typical member of that set be snj(e,o)

'ith j = -n"'n'.’"..o'no Then

2
v {n“snjw,m} =0 , (17)
2, =-n=-1

V(R snj(e,w} =0 (R>0) , (18)
Iq SsSmx  = Sy (19)

where § is the surface of the unit sphere.

Next, define

v (0R) = (S - - )s_. (8,8 (20)
nj '/ n+1 2n+1/“nj "’ *
R o
On account of (17) and (18)
2
v an(O,R) 0 (21)

for R > 0. In addition Wn (c,0) = 0O,

3

The function wn has a singularity at the origin but, since it will

3
always be multiplied by a field which is identically zero in a neighbourhood

of the origin, the singularity can be effectively ignored in the subsequent

analysis.

=10~

¢
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To abbreviate the notation the value of u at the point R, 8, ¢ will

be written as u(R). Let T(0) be the interior of the sphere of radius o
and centre the origin. Then, by the divergance theorem,

ot

i
Jeoy Tz ¥

2
(o) T, YaylorRI% Ja Ty (O Yy lor0) 07 a8

9
- I'r(a) Tix axk *nj(a'md"s

It should be remarked that T(0) may encompass part or the whole of T_.
Therefore, possible discontinuities in the field across S have to be borne
in mind in applying the divergence theorem to integrals over T(d). However,

the continuity of T 3k proved in Lemma {1 guarantees the validity of the above

formula.
Since *nj(a,o) is zero
T du
ik m 3
Into) Tx, Yny(OrRI%E " =fo(oy A o, o, ¥pg (OoR)
(22)
du 3
1 Py 2
+ + dx
from (1). Now, by the divergence theorem,
3u, . 1 1]
3 _ni . . 5 | - 3u _'nj
Jagay ¥ ax, X, & = g mmy > oa -~ I a (23)

on account of (21) and Lemma 1. Also




auk 1 W 2 v
agﬁi“'faniwkax“ = Lo w0l

v
e _nj 4 (24)

(1]
) nj
+ T{g) 3x (uuk) x ax
k i
after two applications of the divergence theorem and Lemma 1. Since whj

vanishes when R = ¢ advantage may be taken of (13) to assert that

w Y s
[Fﬁ?]n-o = nk[_é'l;J]R-d = -n, (2n+1) :‘35 . (25)

Inserting (25) in (24) shows that there is no contribution from K.

Hence, combining (22) - (25), we obtain

3 du ay
2n+1 I m 3 n
2L [y (o)s, 0 = | Voot R ()
S, '8 (o) a:& nj ax, X vy ax,
(26)
g1 _1
- {u
.y s )
wherein 311)‘/3::k may be replaced by -uzpui by virtue of (2).
A further formula is helpful. It originates from
AL R S SI F oy .
o) 3x, ax X7 Jg Pyt o, (o) ik T ax % 37

after drawing on Lemma 1 again. Now, from (21) and the symmetry of the double

partial derivative,




azwn au 22 v,
Iptoy Tix ax, 0 % %= fog) o 3’& ax axk ax

2

L
_;L ap _n
= IQ 2nkuu1 x 3xk ozdn Lr(o) 2“1 axk axiaxk ax
( ﬁd_ _u__i) 2
= 2 u u,0 ag
IQ Py axiaxk Ry 3xk axk i
T(O) (ui axk) 3xk ax (28)
Also
3# n3 au uk avh’
Iﬂ i ik axk a - Iﬂ{nkA 3x + "“1(axk xi)} 3xk a (29)
and in here we can put
Do My | ,,kii__i”n
By ax axk axi 3xi
through (25). Hence (27) - (29) supply i
:
3t,, Ay du ]
ik _nj - n -2 nj 2
fno) ax, ax_ % [o x * 2 ax, Cway ) Iny = ° aa
(1] 3 3*
+ 2fn{ni . (uu,) y::i n 3;; (llui 'azi)}a an
w
- —ni
f-r(o)z (“1 axk) w, ko

Since azwnj/axkaxk = 0 the integrand of the second surface integral can be

expressed as

) a‘h
(ny a:k " 3x1)‘“‘1 axkj .

But, if in (12) C is allowed to contract down to a point in such a way

that S' becomes all of S, we see that the integral of n A grad { over a

PSSR TN TSRS Y S Tt Y



closed surface is zero. Hence the second integral over £ disappears and

2nt1 v,
] o In{x o, 2 (g) + 2 == 7, (mi)}s jasz
(30)

2 3
= ['r(o) low’y, - 2 ER (uy a&)} ax

Note that in obtaining (26) and (30) no derivative or combinations of :
derivatives of u; other than those occurring in Lemma 1 have been called

for.

A rewriting of (26) and (30) is desirable. Put

(@) = [o uao)s a0 ,

Pny nj

2
pyl®) = Jg eu u(o)s a0 ,

3
NG ]9 A;;m- u,lo)s a0
)
®nyto) = fna_x: (i )8, a8,

agx(®) = Jotu 5 —*'— + u grad ws a8 ,

)
» gnj(a) - ja 5;: (u, grad u)snjdﬂ .

: In addition (A.1) and (A.2) of Appendix A may be quoted to give when n > 0

n+1 n=-1
n+2 1
grad ¥4 ] ByySper,o/® R )

2n+1
a,.S ¢
om=n-1 puont1 B3 n=1,8

where the summation convention does not apply to a repeated Greek suffix.

Then, if n > 0, (26) furnishes

-14-
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ER— o " Lo

n+2 nt1
2n+1 o, (1 R 1
=—p . o) = [(fo(——-F—")g RV +— ] b _ (r (R) + s (R)}
" Fny 0" n=1 " 2n%1/%ny P omnet Ry Fae1,a n*1,0
nt+1 n=-1
- R ) {r,, gR) + 8 (R) } (31)
°2n+1 front1 -Bj n-1,8
1 2 Rn+1 ni1
- [ (R) + — (2g4) (R)) 4R
B oot Raghitnet o x 2 gl 28y k1,8 x
while (30) provides
ntt
2n+1
o (ryy(0) + 28 (@) = Jor—= 1 of (R) - 2y (R)}
on nj 0 R am—n=1 ud 9n+1,¢ n+1 Qa
Rn'l-‘l n-i‘l (32)
- S - ag.ef (R) - 2y (R) HHar
2041 o= L %83 1,8 1,8

for j = -n, *nt1,eee,ne If n=0 (which entails j = 0) the terms

involving 281 are missing because
1

grad Y., = ) b_.s 2

00 a__1~aj1,c/k

Wwith the convention that the terms in gBj are to be removed when n is

placed equal to zero, (31) and (32) can be retained for all n > 0.

The notation will be further simplified by putting (31) and (32) in the

form
M (R) n+l
o,~nji R
an(o) 2n+1 I ¢ an * ~2ntt ~nj(n)}dn ’ (33)
P dixzi(m g
Toy(0) + 28, (0) = o2 [o'f ot :— D,y (R) 4R (34)
where
n+1
Boy(R) = =Ry v 1 B tr 0+ my )" B )b, ) (35)
o=-n-1
n-1
ny(R) = Ra,y = s.z'm,{‘*ﬂi('n-hﬂ * 8,8 T eyt m) (36)

R Em— e e et




n+1

- [ - 7

Cay (R Q_Zn_, Bay* Snt1,0 = 2net,d) ¢ (37)
n=1

D = - * - 2v . ki

ng R a-gm 235" 90,8 = ey, g (38)

The body is of finite size and therefore there must exist positive finite
01,02(02>c1) such that the field under consideration is identically gero

1 and outside the sphere of radius °2' the

centres of both spheres being at the origin. Obviously, 01 can be reduced

and °2 increased, if convenient, so long as both remain finite and positive.

ingide the sphere of radius o

the right-hand side of (33) must vanish

Since gnj(a) =0 for 0> o,
for all such o. However, the integrand also disappears for R > 02 and
accordingly
o g
2 n 2 _n+1
/o @ (RI/RIaR = 9, [,° R By(RIGR =0 . (39)
Similarly
g (4
2 n 2 _n+1
/o {cnj(n)/n Jar = 0, fo R D (RIGR=0 . (40)

Let p be a positive integer. Suppose firstly that p > n. Then, from

(33), o+
2n A_.(R) R 'B_.(R)
2 20 o ~ni 2 g ~nj 2
lp . (0)|° ¢« —== af ar|‘ + |f ar|€}
Bnj (2m? 0 gn 0 2n+1
2mZn o 2p—2n-% 4 %-2p 2
<= {[yr ar [, R a4 (R) | “ar
(2n+1)
o 2t % o '% "2 _4n-2 2
+ fo R dr Io R g Igﬁj(n)l ar)

by Schwargz's inequality. Hence

16
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1 1
2pt < = =2p
2 2, (0 .2 2
Ignj(o)l < 20 {zjo R Ig,nj(n)l drR
(41)
1
E -

2p -
+ JoR® g, (R12aR}(2me) 2

for p?n. When 1 < p<n we draw benefit from (39) and write

3 3 :
A _.(R) g, A . (R) g, 2p+ < =2n o, =-2p~
2 2 2 a 2 4 2
U:-—l—"“n dalz-|j° —J—““n al® < [ R ar [ °R 8, ()1 “aR

for o < 02. Since

3 3
o, 2pt = -2n 2p+ = -2n
foz R 4 arc f: R 4

we deduce that
7 3
2pt < O, =2p~ =
(2::-»1)2|gnj(a)l2 <so ¢ foz R 4|§nj(a)lzdn

(42)

(B

1

rszRZ
0

2 2
+ 2¢ (R) | “ar

Ig,nj

for 1€ p<n and o0 ¢ °2

From (41) and (42) follows

1 1
n 2p+ = - =-2p
P 1w e

2 -2
P Ignj(n)l dr(2nt+1)

L n 2
I I lp @1«
n=0 j=-n an n=0 j=-n
7 3
® n 2pt = 0, =2p~ < -
+ I 1 8 Yflr 4|§,nj(n)lzdn(2n+1) 2 (43)
n=p+1 j=-n

g_ 2 P 2 -2
fo R 18,4 (R) | “ar(2n+1)

¥
Nl

® n
+ 7 ¥ 2
n=0 j=-n




To estimate the right-hand side of (43) observe from (35) that

2 2 2 mtl 2
I, (RI° € 3030g 17+ 31 1 Boylr o +ey
a=-n=-1
n+t 3
2
+3] I (.t “ .
ommn=1 ~aj'k ~nt1,ck
Now
n n+1 2
jz_n|°_§n_1 23 Tar1,a ¥ Bnr1,a’!
(44)
_ o+1)(2me1)? "E‘ " .e )
2n+3 o= n+1,0 1, al
from (A.8). Further
" r6d 1Y :
i (_.) <9 ! b (¢ ) |
amtneg 03k Snet,ax Ly L ey Yo et a’s .,
and so
3 ln? (b ). ¢ 12<9("'”Q'"”2 :)‘: m):’ () 3 12
§5-n mon-1 ~aj’k ~n+1,0k 2n+3 =1 amn-1 1,08
from (44). Hence
n n n+1
2 2 2 2 2
T AR < 3d; T Ig. 0 +32m) | Ix +s |
seon Ay 2 - L S P R P
3 n+
2 2
+27(20#1)° ] 1 It “ .
=1 o=-n=-1 St a8

Another observation is that

! 1 lg,nj(n)l2 = falpwzg(ll)lzdn
n=0 jm-n




on account of the completeness of the spherical harmonics. 8ince p is

bounded it follows that

® n
I ) dgymi? <s folgmifen .
n=0 j=-n
Similarly
T 2 2 2
L a--z-n-ilrn'.'1'“(n) * 8o R < JoUlutR) 1 + |2u /o _|“}ag ,
® 3 nt1 2

2
I 1 1 g0l <8 Jplumii®an

where B is now being used generically for a constant independent of R.

It may be shown in a similar fashion that

n 2 2 n 2 2 n-1 2
,z-,,"‘n:“‘” < 39 ,.2..,,'%' #3001 1ty * Sl
3 n-1
2 2
+2702m1)° 7 7 It |
=1 P=ent+1 ~n=1,8s

the last two terms being absent when n = 0, With this convention

Ll et t gl €8 JgllamT e /e ) TSan
® 3 n 2 )
D1 1 g, gl <8 [glumitan .

n=0 =1 fm-n+i

Let us now suppose that

1
2p- 5
[oUgm) 12 + 12u sax_12)an < c,R 2, (45)

This statement is obviously valid when p = 1 from the assumed properties of

the field. 1Indeed, the left-hand side is zero when R < 01 and when




e

e S ot e o P —

R > 0_,. Then (43) and the succeeding inequalities reveal that

2
3
® n 2pt <
[ghator)? = I § |pjn(o)|2 <BCo (140
n=0 j=-n P
for o < 0y Invoking (3) we infer that
3
2pt -
2 2 2 2
Jglutor1“ad < mx c,0 (1403) . (46)
A similar analysis applied to (34) furnishes
[oIA =2 u (o) + 2 22 ¢ )Izdﬂ<3cazr% (47)
8'* 3 m 3xk e ™ P
m
and again (3), together with (46), gives
au- 2 2 2p* % 2
fn'a_x; < BK°C 0 (1403) . (48)
Inequalities (46) and (48) may be combined as
[oClurR) (2 + (9w sax_|%}aa < BK3C g %(14»02) (49)
ati® ' m P 2

< .
for R 02

: Then, when (45) holds for some p, (49) shows that it holds for p + 1

provided that cp*1 - szcp(1+a:). Since it is certainly true for p = 1

1
2P--.
2 2 2 2. .p~1 2
IQ{IE(R)l + lauhlaxhl }an < {BK (1+02)} C,R

for R ¢ % and p = 1,2,... .« An immediate consequence of letting p + =
1 1

is that u =0 for R« 1/32x(1+c:)2. It is transparent that tjk £0 in

the same region.
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1 1
Lst R, = 1/52K(1+a§)2. Choose another origin X, which lies within the

sphere of radius Ry;. The body is entirely inside the original sphere of

radius o, and therefore contained in a sphere of radius 9%, + Ro about

x However, the field is identically zero in a neighbourhood of %, and so

~1.
the foregoing theory may be applied to show that it is identically zero inside

a sphere of radius
1 1

2, 2,2

R, = {1 + (0 +R)) } “mx .

In view of the arbitrary selection of x, we deduce that the field is

identically zero throughout a sphere of radius R; + Ry centered on the

original origin. Clearly, the process can be continued and the field will be

identically zero inside a sphere of radius Ry + Ry + Ry +ecot R, = S, where
1

2, 2,2
R ={t+¢(s ., +r)7} "Bk . (50)
If 8, approached a finite limit as n + ®, it would be necessary for
Rn + 0 which is inconsistent with (50). Therefore, the body will be totally
enclosed by the sphere of radius 8, after a finite number of steps. Thus

the field ia identically zero throughout the body and the theorem is proved.

p 6. The exterior problem

- The next matter to be examined is what happens when the regions T,
and T_ are bonded across § and, instead of specifying the displacement and
traction on S, the behaviour at infinity is prescribed. It will be supposed
that the material parameters A, i, p have in T, the constant values %,
uo, po respectively. The restrictions that will be imposed are covered by

c«mdy_:mg_g. n addition to satisfyin 3) the material rameters must

comply, in both T  and T,, with either
(a) 1Im(u) » 0, Im(A+2u) > 0, Im(w2p) < 0 ,
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or (b) Im(w) > 0, Im(A+2u) > 0, Wp> 0 ,
or (c) u>0, A+ 2»>0, uzp >0 .
There is no difficulty in checking that any one of the alternatives is
sufficient to ensure the validity of the constraints placed on wa and ub
in §3. FPurthermore, under any of the three conditions,

Im(iwbu ) > 0, Im{iwa(A) + 2u)}> 0 . (1)

We shall now prove the following theorem.

Theorem 3. Let p be continuous, A be continuously differentiable and u
twice continuously differentiable in T_+ 8 and have the constant values
Por Xgs ¥y iR T.. Let u, Ty Satisfy (1) and (2) when x £ s and be such

that v, and aujlaxk are continuous in both T_+ S and T, + S. Suppose

further that

(W, = (w_, (njtjk)+ = (njtjk)_ (52)
on S. Then, if u, tjk satisfy the radiation conditions (8) at infinity

tjk 2 0 subject to Conditions A.

{4
us
©

Proof. Let R be so large that a sphere of radius R centered on the origin

totally surrounds S. Then
» 2 -
Ja nyTy (RIuy (RIR"AQ = fs ny(Tgu), a8
* [
du 2 du 3 du auk
s Loli] * 2w+ m)Ed ¢ a) - el lullax
T 0’3x.| 270 3xk axj axk 3xj 0

where T is the volume between § and the surface of the sphere of radius
®
R. The star signifies a complex conjugate. By virtue of (52), nj(tjkuk)+
*
may be replaced in the integral over S by nj(tjkuk)_ and then the

divergence theorem applied to T_. Hence

3 R R AT A TR SN AT AR T S 1 e




I njtak(R)u;(R)deﬂ

du ,2 u
- f-r(a){*'?xﬂ‘ *3 “( )( “: - po’lut?lax .
m

The imposition of the radiation conditions (8) now enables one to say that, as

R + o,
2u ou_.2 u du_,2
m 2 2 3
e et 227 (32 3
n 3 2
u1 2 2 2 2 R 5
+ Is-q-k —‘ } - pw lgl ]di- —fa{iubuo((gl - 'xa."ll ) (53)

+ twa(y+2u) Ix-g)P1r%a0 + o(1) .
Under conditions A the imaginary part of the left~hand side of (53)
cannot be negative whereas, on account of (51), the imaginary part of the

right-hand side cannot be positive. This is possible only if

! 3uIll 2 3u1 auz 2 auz 3u3 1
ua [t a2l vt 3 22 R
Roe T(R) axn 3x2 ax1 8x3 3x2 3x1 3x3 (s4)

- pwzlglzld;_c_- o,
lim J",z{!:no(l,\él2 - '§.2|2) + q(x°+zuo)|§-u|z)nzdn =0 . (55)

It is evident at once from (54) that, for conditions A(a), u =0. It

0 and the theorem is proved. Similarly, under A(b), (54)

(]

follows that Tjk

implies that rjk £ 0 and then (2) enforces u = 0. Again the theorem has
been demonstrated.
For conditions A(c), (54) is no longer helpful and (55) wust be turned

to. In Appendix B it is shown that the radiation conditions entail (equation

(B.11))

L] .
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subject to

gx=0 - (56)

Since ; and ; A g, are perpendicular the implication of (56) is that
lal? = {cuaiggh? + (lg D?VR® + 0t1R)) .
Accordingly,
fn{“o"’zbaiﬂo'z + (A°+2u°)w2a3l£°|2}dﬂ =0
stems from (55).
By hypothesis the coefficient of |g°|2 is non-zero and so we are

obliged to have 9o 2 0. similarly, fo 2 0. But, in Appendix B, it has been

0 and 20 £0 make u =0 in T,. Hence

demonstrated that fo

tjk £0 in T._. It follows that (w), = 0 and (njtjk)+ =0 on S. PFrom
(52), (u)_=0 and (njtjk)_ = 0 and now Theorem 2 enforces u =0 and
Tjk 20 in T_. The proof of the theorem is finished.

Bvidently, the same method of proof but drawing on Theorem 1 can be

applied to the piecewise homogeneous body and so we can state

!232;53,3. Let T_ be a bonded nested piecewise homogeneoug body. Let v,

Tjk satisfy (1) and (2) except on any interface and have cestinuity
properties analogous to those of Theorem 3. If u, tjk comply with the

bonded boundary condition and satisfy the radiatinn conditions at infinity

then, under conditions A, u =0 and Tjk 2 0.

The theorems have been proved with the boundedness of R|u| as part of
the radiation conditions. However, it is demonstrated at the end of Appendix
B that this requirement can be dropped without modifying the assertion that
fo 0, : 8 20 implies that u =0 in T,. Therefore, the validity of
Theorems 3 and 4 is unaffected by this change to the radiation conditions. We

state this as a corollary.
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cOrollarx. Theorems 3 and 4 remain true when (8) is the sole radiation
IR IE IR S e — et —— e e i P

condition.

7. Uniqueness for scattering

An easy consequence of the theorems of the preceding section is that the
solution to the scattering problem is unique. Let an incident displacement
21 be generated by some means. It is presumed that any scattered field
produced is outgoing at infinity and so satisfies the radiation conditions.
If there were two possible scattered fields, taking the difference between the
total fields would eliminate gi and have a field satiafying our theorems.

That field must therefore be identically zero and uniqueness of the scattered

wave has been established.

ghggggg_g. If a given incident wave produces a gcattered wave satisfying the

radiation condition then, under the conditions of either Theorem 3 or 4, the

scattered wave is unique.
It is, of course, sufficient for unigueness to impose the radiation

condition in the form (8) alone but it may be more convenient, in practice, to

keep the boundedness of Ru available even though it is jettisonable.

]
1]
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APPENDIX A
This appendix is devoted to deriving some properties of spherical
harmonics which are needed in the main text. The summation convention is not
employed in this appendix.

Since n“sn (6,¢) is a solution of Laplace's equation so is

3
a<n”snj)/axk. It will, however, be of one degree lower and hence is

expressible in terms of solid harmonics of order n - 1. Hence there are

constant vectors a such that

P3

n n-1 il
grad(R sn ) = R

Z a .S (j = -n,-n"'"ooo'n, . (A.1)
3 ~pj n-1,p
p=-nt+i

A similar argument reveals that there are constant vectors Eqk such that

n

n
/Ry = ¥
o=~n

S /Rm1(k = "M1,o.o,n.1) . (AO:)

a(s b
grad( Rax®nq

n-1,k

It is understood that n » 1 in (A.1) since soo is constant and

grad soo = 0.

From (A.1)
1-2n n ni1 n
div{r grad (R'S_,)} = a . * grad(s /R)
nj p=-nt1 ~ri n-t,p
n-1 n
= ) - b s s

a
p=—nt1 ~?) g=-n ~aP nq

on account of (A.2). Since Vz(Rnsn ) = 0 we deduce that

3
T i
(1-2n)ns_, = P b S .
8} puent1 P quop, TP

The orthonormal property of the snj now leads to the conclusion

n=-1

)

p=-nt+1

o Eqp = (1-2n)n6q (d¢d = =n,eee,n) . (A.3)
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Similarly, by taking the divergence of (A.2) multiplied by R2™' ye

infer that
i
b . a - (1*2‘!)“6 (k,p = "M‘,oo.,n." . (A.‘)
e Tk 2pq p

Next, form the scalar produce of (A.1) and itself with 3 replaced by

qe Then

2n~2 n? . n-i‘l

n n
R L 2045n=1,p R 8 Spe1,r = FOURS, ) o grad(R'S_ )

nq

vhence
n-1
R?n-! 2

n n
= a(rR's_,) » d(R aQ
Lot fn grad( n3 grad( an)

Tpy " R

from (19), or

1 8 o8
&) s =n?s 72 (—i—m+ 1 _8) _Bd) ggeap .

. o
P P} ~pq 0’0 -mze 9 3¢

The double integral can be converted, by integration by parts, to

%2 13 g 1 azan
- IoJo snj{;I;-g S5isin 0 g0 + — 2 Jsin 6d6a¢
sin" 8 3¢

when the boundedness and periodicity of the spherical harmonic are borne in

mind. But, from (17),
az
1.3 (sin © —-1) -——1 =0 .

n(n+t)s , + ———= o=
nj sin 6 36 sin 0 30

Hence

n=1
. ..‘~m = n(‘*zn)c (j.q d -ngnocgn) . (A.s,

a
pe-nt+1 ~p3 iq
It may be shown in a similar way from (A.2) that

n
! » -gqp-n(zn-nckp (Pok = =nt1,c00,n=1) . (A.6)

q=-n "I"

A further result of some interest can be derived.

ko




n=-1 n
- 1)b . -1
p_zm jZ_“{(zn Da, + (2n+1)py Tel(2n=1)a , + (2n+1)D, )
n
= J (2n-1){(2n-1)n(1+2n) + (2n+1)n(1-2n)}
3 jm-n
i
1 n-1 n
+ (2t b, * {(2n-1 2n+1
(2n+1) p_z:w jz_n Ry, * ((2n-t)a_, + (2ne1)p, )

by (A.5) and (A.3). The first sum on the right clearly vanishes and so does

the second when (A.4) and (A.6) are invoked. Therefore 1

(“2“)29 - (1*2“)2 P= -n"’"coo,n-‘, j b "n'ooc'n) . (A.7)

3 3p ¢
If (A.7) is incorporated in (A.5) and (A.6) we obtain

n-1 2
. - n{1=2n) - -
p--,zm Pip * Bp = Taem  byq (BT Receem) (r.8)
n

2
. < D(1+2n) -
qz-n 2q ° 2pq 2n-1 Ckp (PR = TBH,eel,n1)

. (A.9)




APPENDIX B

In this appendix some properties of the field in 7T, will be obtained

when T, is a homogeneous medium (with A all positive and finite)

ol uo' po
and the radiation conditions are imposed on the field. Then, it has already
been explained in §3 that

9
w (x) = [s{rjigjk(g.x)ni =~ A vy -5;; gjk(g.x)

]
- "0(“1“j+nj“1) o, qjk(g.x) }dsy '

for x in T,. Using the explicit formula for Iyx in (4) we obtain

u = grad ¥ + grad aiv p + w’bip (8.1)
where |
~iwalx-yl|
13 3 e X
V(x) = ——— Joln, T, =Anu 35 - w(nu+nu) 5} = as_
"pouzaxj S 143 Onmayj 019 3¢ ayi %=yl y
~iub)x-y|
1 ) e ~
pylx) e’ Jgtnyt 5=Nonaty i R e I
So long as x keeps away from 8§ .
Vo+ ey , (B.2)
v’p + WPrip =0 . (B.3)
On account of (B.3), (B.1) can be rewritten as
u = grad ¢ + curl curl p . (B.4)

wow, if x|l > lIxl, I;g--zl.1 olamlxylttamixl o, e expanded in a
uniformly and absoluteéely convergent series of powers of 1/|§| and any number
of derivatives can be taken without destroying this property. Also 8 is
bounded so that there is a finite R' such that 8 is completely enclosed in
a sphere with centre at the origin and of radius R'. With R, O, ¢ the

usual spherical polar coordinates, it can now be deduced that, for R > R’',
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P(x) = o U8R Z e (6,0, (B.5)
=0

curl plx) = e L¢PR 2 PRUTY (B.6)
=0
the series and their derivatives converging uniformly and absolutely.
However, ¥ must satisfy (B.2). Inserting (B.5) in (B.2) and equating to

zero the coefficients of the various powers of 1/R we arrive at

2
14 e
1 ) n 1 n
21“(“"’1)f  ——— o— (sin e -_) +
nt1  8in 6 38 30 .1n2 8 302 (B.7)

+ n(m‘)tn- °(n-0,1,2,ooo) L d

Dealing with each component of curl P in the same way we have

‘ 2
9 3
13 4 — 3n
2t S 98 S0 ) T g T (5.8)

+n(n+1)2n-0 (n = 0,1,2'000) .

In addition, the divergence of curl p must vanish. To meet this

requires
% i =0 . (B.9)
L ] —-—1—a 1 =
1wbgn+1 11 ain 0 36 (sin @ g 1 ) + ain © 39 (gn i.) 0 (n>0) (B.10)
where ;1, 52, 53 are unit vectors along the directions R, 9, ¢ increasing

respectively.
By means of (B.4) - (B.6) the pertinent expansion of u in powers of
1/R can be written down but explicit details will be omitted here. It is

sufficient to note that, if fo £0, (B.7) implies that tn 20 (n>)

because we have assumed that wa ¥ 0, Thus £ 50 forces $ =0 in R > R'.

0
Taking advantage of the analytical character of the integqyal for ¢ we infer

that ¥ 20 in T,. Similarly, g, =0 implies that curl p 29 in T,.

Consequently, we reach the important conclusion that, if fo 0 and

go 0, e = g in Tye

PSRy e e At e - T
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One useful formula is that

e—iw&k ‘-iubk 1
u = -iwa fo Y ,j‘.’1 -1«!:1.1 %R + O(—z) . (B.11)

R
REMARK. In the radiation conditions stated in the text and as used above

it is asked that Ru be bounded as R + =, This extra requirement is
unnecessary since (8) is sufficient by itself to justify all the results that
have been obtained. The proof of this assertion will now be set out.

For convenience (8) will be repeated here; it is

R{xntjn + j'“’b"o(“j'“n ‘xj) + im(\,-rzuo)xjunx_} +0 . (B.12)
Multiplication of (B.12) by xj supplies
R{xm‘tjmxj + 1""(%"2"0’%"::} +0 . (B.13)

The reality of A

0’ uo and po permits the observation that

L ] L J | [}
fn(njtuui - nyT 3Tig% ~ PyTigles (B.14)

In other words the integral on the left of (B.14) is independent of R

2
R°agt = [ (n

although T 13 and u; are functions of R. Now
I;:.‘l' im + 1"b"o(“j'“n;n;j’ + im(xo-rzuo);jun;nlz
- |;.¢mt:h.|2 + (ubuo)zluj-um;m;j|2+ {uu(%+2u°)}2lun;_|2-1m,buo;m(tjnu;-t;nuj)
+ dwla(dg*2u)) - buo}(umt;k - “nrjk);j;m&
= l;ntjmlz + (wbuo)zluj - u-;;-;jl2

{‘( Xo+2uo)-buo} 'S " - 2
‘“o*z“o’ Ixnt x, + im(k°+2u°)ulx_|

Im™3
- {1 - buo/a(loﬂuo)}ht_T

”xj l ‘e wz.buo ( x0+2u0) Iunxnl 2
~ »
-Lubuoxn(r j-“j'tjn“j) .

Incorporation of this in (B.14) and application of (B.12), (B.13) shows that
2 -~ 2 - ~ ~ 2 ~ ~ 2 2 L 2
fan {lx.tj-l Ix_rj_le + buolx-tj-le /a(A+2u)) + (uby) luj-umx-le

2 ~ 2
+ 0 abuo(xo-rzuo)lu-xnl }aq

et




2 * ~ 2
1€ > Iynr a* |

o this is possible only

must be finite as R + =, Since lxitj-

if
-~ ~" 2 » 2 ~ ~ 2 -~ 2
fnlxmtj_(n)le aa, fnlxntjm(n)l aa, fnluj(n)-u.(n)xmle aa, [olu (R)x |“aq
are all 0(1/R2) as R + », Therefore

2 " A 2 . » 2 1
fgluj(n)l aa < 2 !n{luj-u.xnx 1%+ lugx x| Jag = o) ,  (B.15)

3 R

fa';‘n‘jn“‘"z"“ - o178 . (B.16)

The order estimates (B.15) and (B.16) are enough to enable us to dispense
with the extra radiation conditions since they have been derived entirely on
the basis of (8) or (B.12). For the purpose of that further condition was to
ensure that there was no contribution from the sphere at infinity in coming to
the representation of u in (B.1). Now, the contribution of the sphere at
infinity to u(y) is given by

9 3 2
_fa{nitijgjk(z.x) - A u —3;; 94y (XeX) = Wy(njuen,u ) 3;:- gjk(g.z)}n an
with R > [y{. On the grounds of the explicit formula (4) g4y can be
written

iwa iub

where fjk covers the terms with e and hjk those with e +« But,

because of the uniform expansions in 1/R,

it
ik i i 1
= ~jwax £, + O(=3) ,
3xi 1”3k R2
oh
. | S i

as R+ ® with |y| fixed. The integrand under consideration can now be

expressed as
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- 2

{x Ty + lwa(d +u, )x 2¥n*y + iwauju j}f R
L) + .
+ {xitij + 1wb(x +u )x u xj + iubyyu j}hij ollul)
With the benefit of (9)
£ = X5 F(0 e 1R p L otir?) |,

=i ubR 2
hjk = (xjxk - ij)H(O,Q)c /R + O(1/R") .

Hence the integrand becomes

~-jwaR

{x 1 + iwa(A +2u )xm“h)xkrR‘

1 13“:

=1 ubR

- - - + + .
+ {xituxjxk % i 1wbu°(uk ujxjxk)}une o(lxi ij' fal)
The first term need not be discussed further on account of (B.13). As for the

second it may be rewritten as

[{;1tijxj + iwa(A +2uo)u }xk 1Tk~ iwbuo(uk-ujxjxk)

- tua(hg+2m)du x ﬁlune ~iubR

and its contribution therefore disappears by virtue of (B.12) and (B.13).

Moreover,

Sglamiam? < an [olumiZan = oti/ed)

” 2 2
(fnlxitijldﬂ) = 0(1/R°)

on sccount of (B.15) and (B.16). Hence the value of the integral over the
large sphere is zero in the limit as R + =, Therefore the formula (B.1) has
been verified solely under the condition (8). Since the remainder of Appendix
B is founded on the representation (B.1) alone its conclusions are still
correct without the additional radiation condition. Accordingly, our

contention that (8) is a sufficient radiation condition by itself has been

vindicated.
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